Солнечная батарея сеть


Солнечная поддержка сети

Очень часто нам задают вопрос — насколько эффективно и нужно ли вообще использовать солнечные батареи, если уже есть подключение к сети. Ответ на это вопрос зависит от многих факторов. Ниже рассмотрены некоторые типичные случаи и даны рекомендации по применению солнечных батарей в этих случаях.

1. Сеть есть, качество электроэнергии отличное, перерывов в электроснабжении не бывает.

Соединенная с сетью фотоэлектрическая система электроснабжения

Вы счастливчик! В этом случае экономического эффекта от применения солнечных батарей, скорее всего, сразу не будет. Стоимость электроэнергии, генерируемой от солнечных батарей, в настоящее время выше, чем при покупке от местных энергосетей. Поэтому возможна только экономия потребляемой электроэнергии, но не денег.

Точнее, стоимость электроэнергии выше, если брать срок окупаемости 10 лет. Если разделить затраты на покупку солнечных батарей на весь их срок службы, то стоимость 1 кВт*ч будет примерно равна той цене, которую мы имеет сейчас от сетей — 2,5-3 рубля за кВт*ч. Поэтому, на самом деле, солнечные батареи, вопреки распространенному мифу, уже сегодня не убыточны. Этот миф возник около 20 лет назад, когда стоимость солнечных батарей была в разы больше, а стоимость электроэнергии от сетей — в разы дешевле.

Учитывая стремительный рост тарифов на электроэнергию после реформы РАО ЕЭС, вполне возможно, что экономический эффект от соединенной с сетью солнечной электростанции станет положительным в ближайшие годы. Если вспомнить, что срок службы кремниевых фотоэлектрических модулей составляет как минимум 30 лет, то вполне возможно, что ваша фотоэлектрическая станция принесет вам существенную прибыль в течение времени ее эксплуатации.

Если вы решаете поставить солнечную батарею у себя в доме даже при наличии надежного централизованного электроснабжения, наиболее оптимальный вариант — это соединенная с сетью система, состоящая из:

  • солнечных фотоэлектрических панелей необходимой мощности
  • сетевых инверторов соответствующей мощности.
  • опционально можно поставить дополнительные счетчики электроэнергии (если такая функция не встроена в инвертор)

Все! Больше ничего не нужно для того, чтобы вы начали вырабатывать свою экологически чистую и, в каком-то смысле, бесплатную электроэнергию. Стоимость электроэнергии от соединенных с сетью фотоэлектрических станций гораздо ниже, чем в автономных системах, за счет того, что:

  1. Нет необходимости в аккумуляторах — сеть является бесплатным аккумулятором практически бесконечной емкости. Она принимает излишки энергии когда есть избыток солнечного электричества, и дает энергию, если солнечной энергии не хватает
  2. Сетевые инверторы дешевле батарейных
  3. В сетевой системе гораздо меньше элементов, чем в батарейной — не нужно аккумуляторов, соединителей аккумуляторов, контроллеров заряда, защитных устройств постоянного тока и т.п.
  4. Соединения на стороне переменного тока также проще — не нужно выделять в щитке нагрузку, которую нужно резервировать, не нужно заботиться о соответствии мощностей нагрузки и инвертора и т.д. Вы просто подключаете выход сетевого инвертора к щитку.
  5. Обслуживание практически не требуется

Все вышеперечисленное объясняет, почему во всем мире самыми распространенными системами являются соединенные с сетью.

Следует учитывать некоторые требования, которые имеют местные энергосети к подключению дополнительных источников энергии к сети. Обычно, для генерации энергии в сеть необходимо оформлять довольно дорогостоящее разрешение, да и дело это хлопотное. К сожалению, в отличие от продвинутых в отношении солнечной энергетики стран, наше законодательство пока не предусматривает безусловное подключение солнечных генерирующих мощностей к общей электросети.

Несмотря на то, что солнечные инверторы вырабатывают очень качественное напряжение, зачастую намного лучшее, чем напряжение в сети, сети не разрешают вашему электросчетчику просто крутиться в обратную сторону. И это даже невзирая на тот факт, что никакой опасности для сетей солнечные сетевые инверторы не представляют — они прекращают генерацию энергии как только в сети пропадает напряжение (например, его отключают для проведения ремонтных работ на линии электропередач).

Поэтому, для исключения претензий со стороны местных энергосетей, нужно обеспечить потребление всей электроэнергии, вырабатываемой солнечными батареями.

Справедливости ради нужно сказать, что в последнее время стало все больше таких объектов — люди просто хотят иметь у себя на крыше солнечные батареи. Тем самым они показывают, что заботятся о сохранении окружающей среды, думают о том, что они оставят своим детям после себя. К счастью, иметь солнечные батареи у себя дома становится даже модным! Это подтверждает в очередной раз известный закон развития рынка — на первом этапе новые технологии применяют «продвинутые» люди, которые уловили тенденции развития техники, и которые пользуются этими новыми технологиями несмотря на то, что они пока еще дороже традиционных решений.

2. Сеть есть, но выделенной мощности не хватает. Есть кратковременные перерывы в электроснабжении.

В этом случае есть достаточные основания рассмотреть введение в систему электроснабжения солнечных батарей и аккумуляторов. Очень часто выделяемой мощности электрических сетей недостаточно для питания всей нагрузки в доме. Это бывает связано как с лимитом на выделяемые мощности (например, в садовом товариществе ставят трансформаторную подстанцию определенной мощности, и каждому участку достается максимум 3 кВт), или с прогрессивной стоимостью подключения мощности сверх лимитированной (например, до 5 кВт одна цена, а все, что свыше 5 кВт — в 10 раз дороже).

Система в качестве основных элементов будет включать в себя блок бесперебойного питания (ББП), аккумуляторы, солнечные батареи. Инверторно-аккумуляторная система будет обеспечивать покрытие пиковых нагрузок. Солнечные батареи будут питать электрические потребители в доме, когда светит солнце, а если есть излишки электроэнергии от солнца — заряжать аккумуляторы. Далее возможны варианты, связанные с тем, как будет «обвязываться» система — по постоянному или по переменному току. Основные способы соединения различных источников тока рассмотрены на странице «Методы построения гибридных систем электроснабжения«.

Мы предлагаем различные комплекты систем резервного электроснабжения с поддержкой солнечными батареями и ветроустановками, с обвязкой как по переменному току, так и по постоянному.

Эти комплекты позволяют обеспечить резервное электроснабжение в доме при пропадании энергии в сети, а также уменьшить потребление электроэнергии от сети за счет солнечной энергии. Система работает параллельно с сетью централизованного электроснабжения в полностью автоматическом режиме.

Для того, чтобы обеспечить электроснабжение во время аварий в сетях централизованного электроснабжения в системе применены аккумуляторы. Их емкость зависит от количества электроэнергии, которое необходимо обеспечить во время перерывов в централизованном электроснабжении. Наличие аккумуляторов также позволяет перейти при желании на полностью автономную работу; однако в этом случае может потребоваться увеличить емкость аккумуляторов и мощность солнечных батарей.

Работа параллельно с сетью имеет неоспоримые преимущества.

  1. Аккумуляторы должны запасать энергию только в количестве, достаточном для обеспечения нагрузки во время перерывов в электроснабжении. А они, при наличии сети, бывают не часто.
  2. Так как аккумуляторы работают в буферном режиме и при наличии сети практически всегда полностью заряжены, можно применять более дешевые AGM аккумуляторы. Применение аккумуляторов глубокого циклирования позволяет закладывать  допустимый разряд до 80% (изредка такие АБ допускают глубоких разряд).
  3. Выработка энергии солнечными модулями повышается примерно на 15-30% за счет наиболее полного использования солнечной энергии. Солнечные модули работают всегда в точке максимальной мощности. Энергия потребляется в первую очередь резервируемой нагрузкой, излишки направляются на питание других потребителей в доме. Если ваш счетчик может учитывать электроэнергию, поставленную в сеть (т.е. считать в обратную сторону) , то можно «отматывать» счетчик в периоды, когда генерация энергии солнечными батареями больше потребления нагрузкой в доме. Этот режим является настраиваемым и может быть запрещен или разрешен настройками блока бесперебойного питания (ББП).
  4. Система при необходимости может добавлять мощность от солнечных батарей и от ББП к мощности сети. Это бывает необходимо при недостаточной подключенной мощности централизованной сети.
  5. Возможно ограничить потребление от сети настройками ББП. Если в системе применен ББП Xtender, можно также динамически ограничивать потребление от сети в зависимости от падения напряжения в сети — это очень полезно, если сеть «плохая» и напряжение просаживается при подключении мощной нагрузки. Это также полезно при питании от генератора небольшой мощности.
  6. В предлагаемой системе солнечные батареи работают через сетевой фотоэлектрический инвертор. Это позволяет повысить эффективность работы солнечных батарей на 20-30%.

Состав системы

  1. Солнечного фотоэлектрического инвертора мощностью 2-5 кВт
  2. Фотоэлектрических модулей общей мощностью от 2 до 5 кВт.
  3. Блока бесперебойного питания на 6 кВт
  4. Устройств защитного отключения (автоматы постоянного и переменного тока, предохранители и т.п.)
  5. Солнечный провод (специальный, с двойной изоляцией и стойкий к ультрафиолету) — для соединения солнечных панелей между собой и с коммутационным боксом
  6. Коннекторы для присоединения к модулями и инверторам
  7. Дополнительное электромонтажное оборудование (провода, кабельные наконечники, боксы, байпас и т.д.)

В системе могут применяться различные комплектующие. Некоторые варианты приведены в таблице ниже.

Провода переменного тока для подключения к розетке или щитку, а также автоматы переменного тока не входят в комплект. Используются уже имеющиеся в щитке или покупаются дополнительно.

Типовые комплекты таких систем есть в нашем Интернет-магазин в разделе «Комплекты — СБ+сеть«. Дополнительная информация по комплектующим — на страницах с описанием соответствующих товаров.

Эта статья прочитана 12648 раз(а)!

Продолжить чтение

  • Нужны ли солнечные батареи?
  • С аккумуляторами или без?

www.solarhome.ru

Домашняя солнечная электростанция, отдающая энергию в сеть

Дата публикации: 2 декабря 2015

Первый дом в России, отдающий электроэнергию в сеть

30 ноября 2015 года в сети была опубликована статья Сергея Рыжикова «Солнечная электростанция на западе России». С разрешения автора мы воспроизводим ее полностью на нашем сайте. Положительный опыт, приобретенный автором разработки солнечной электростанции для индивидуального дома, примечателен не только тем, что солнечные панели снабжают дом электричеством, но, в первую очередь тем, что автору удалось договориться с местными энергосетями о том, чтобы отдавать излишки электроэнергии в сеть. Впрочем, судите сами.

Солнечная электростанция на западе России

Сергей Рыжиков, 30 Ноября 2015

Сегодня исполняется год как я сделал солнечную электростанцию, научился обеспечивать себя электричеством и даже научился отдавать излишки в городскую электросеть, и официально крутить счетчик в обратную сторону :) Поговаривают, что я первый в стране частный дом, который делится излишками энергии с соседями.

Однажды в FB под интересной статье Александра Чачавы про его опыт работы с Теслой я упомянул про солнечную электростанцию. Оказалось, что многим интересно и меня просили поделиться опытом. Делюсь :)

Мне казалось, что писать особенно будет не о чем и статья получится короткой. Но получилась много букв, картинок и ссылок.

Идея жить на солнечной энергии

Решил я сделать у себя в доме солнечную электростанцию и научиться полностью обеспечивать себя электричеством. Плана сэкономить или заработать, как делают это немцы, я себе не ставил. Мне просто понравилась идея жить на солнечной энергии :) ну и проект показался мне интересным.

Дом у меня находится в городе. Перебоев с электричеством не случается, ну или крайне редко. Необходимости в резервном генераторе нет. Но ведь интересно попробовать, может ли дом жить полностью автономно на солнечной энергии в нашей полосе.

Начал собирать информацию. В тот момент, мне кажется, моя супруга еще не до конца поверила, что я это все серьезно затеваю :) Да и я еще не знал, что из этого может получиться толк.

Первый поиск информации много ответов не дал. Живых проектов в России очень мало. Кто-то что-то делает, но только как дополнительные источники питания и на нескольких панелях. В основном солнечные электростанции создают компании или госструктуры, частных проектов очень мало в стране. Много проектов нашел в Украине. Но это сильно южнее и солнечнее.

В поездках по Германии я много видел домов, на крышах которых стояли солнечные панели. Сестра моей жены, Юлия, замужем за немцем и живет в Берлине. Ее муж, Кристоф, предприниматель и занимается альтернативной энергетикой. У Кристофа я подробно узнал, как это все устроено в Германии. Немцы чаще всего делают солнечные электростанции для выгоды. Они просто зарабатывают на государстве, которое платит особый высокий тариф за выработку солнечного электричества. Даже кредитные линии в банках под такие проекты были. Но самый главный вывод я для себя сделал. На широте Калининграда можно обеспечивать себя солнечной энергией. Я начал подбирать оборудование.

Выбор оборудования

Для реализации проекта в Калининграде я выбрал компанию АЭС-Центр http://aes-center.ru/ . Их сайт оказался на Битриксе. Я давно уже заметил, что это хороший индикатор адекватности руководства :) Кстати, совершенно не ошибся. Ребята оказались профессиональными и честными. А еще, когда курс евро полез в гору в конце прошлого года, они сами предложили фиксировать низкий курс для завершения проекта. Спасибо Фетисову Виктору, директору компании АЭС-Центр за терпение со мной :)

Обычная схема подключения солнечной электростанции выглядит так: Пластина + инвертор = электричество.

Но эта схема не обеспечивает полной автономии. В ночное время электричество потребляется из городской сети. В дневное время избыток электричества скидывается в городскую сеть. Нет аккумуляторов для бесперебойной работы только на солнечной энергии. Но в своем рассказе я еще вернусь к этой схеме, как к одной из самый выгодных и простых в реализации.

Так как я хотел перевести дом полностью на солнечную энергию, к схеме добавились аккумуляторы и контроллер.

В процессе проектирования обсуждалось много разных схем включения электростанции в домашнюю сеть. Некоторых из них мне показались совсем неудобными для урбанизированного человека. В общем, я выбирал вариант подключения, который был бы совершенно незаметен для семьи, чтобы они вообще не должны были задумываться, откуда в розетке электричество и есть ли сейчас солнце :)

Солнечные батареи подключаются к Инвертору, который из постоянного напряжения делает переменные 220В. Инвертор подключается к Контроллеру. Контроллер выполняет ключевую распределительную роль. К нему подключается Инвертор от Солнечных батарей, к нему подключаются аккумуляторные батареи и к нему подключается городской электрический кабель. И именно Контроллер выдает в дом 220В для использования.

В общем, все запчасти подключаем к Контроллеру и пусть уже он думает, где брать электричество.

Логика работы такая. Если есть достаточное солнце, Контроллер использует солнце, если солнца нет или недостаточно, он добирает электричество из аккумуляторов, если они пусты, подключает городской источник электричества. Если солнца больше чем нужно дому, Контроллер направляет электричество на зарядку аккумуляторов. Если они заряжены, он направляет излишки электричества в город. В город? Ладно, этот вопрос я на тогда отложил. Фетисов сказал мне, что «Это нереально подключиться к городу, так что будем выкидывать излишки, не парься».

Так получилась схема подключения. Следующим шагом нужно было определиться с мощностью солнечной электростанции и числом солнечных батареи. Сколько брать пластин?

Дом в среднем потребляет 8-10 кВт*час в день. Вычислено делением счета за несколько месяцев на 30 :) не очень точный метод, но достаточно, чтобы прикинуть, что солнечная батарея должна бы выдать столько энергии за светлое время суток.

Фетисов предложил мне ограничиться 10 пластинами из расчета, что мы будем выдавать 2.5 кВт*час в солнечный день и заряжаться 4-5 часов. Но тут я засомневался. Очевидно, что выработка солнечной энергии напрямую зависит от погоды, от угла наклона пластин к солнцу и он КПД самих батарей. Поворачивать пластины я не смогу, а просто прикреплю их к крыше на южном склоне. Солнце в течение года тоже гуляет по высоте и наклону, погода частенько пасмурная… В общем, я ничего не придумал лучше, как увеличил число пластин до 20 с запасом в два раза от расчетного. И это было правильное решение, как показал потом опыт.

Итак, я выбрал 20 пластин. Разместить получилось 8 на южный склон, 2 на юго-восток и 10 на восточный склон. Можно было на западный, но я выбрал восток — решил, что утром больше солнца и если аккумуляторы разряжены за ночь, то зарядка начнется быстрее.

Потом начал выбирать производителя солнечных батарей. Солнечные батареи бывают двух типов: монокристаллы и поликристаллы. Они так же отличаются качеством произодства. Лучший Grade A. Монокристаллы получше работают в пасмурную погоду. Лидером на рынке является китайская компания Yingli. Они производят больше всего пластин в мире.

Я честно пытался найти российские пластины. Я же видел, что на космических станциях стоят наши :) Делает НПО Квант Москва. Но сайт их на тот момент был ужасным, информацию я получить не смог, найти поставщиков тоже не смог. Так же я отверг все польские и немецкие варианты. По факту они оказались из китайского кремния или недостаточно эффективными. А кроме кремния в пластинах ничего умного нет.

После изучения кучи обзоров я выбрал Yingli YL270C-30b монокристалы Grade A с КПД 17.2%

Увеличение числа пластин привело к увеличению инвертора :) странно, да. С инвертором я долго не выбирал. По совету Кристофа и Фетисова я выбрал лидира немецкого рынка компанию SMA и устройство Sunny Boy 5000TL.

Следующий шаг — Контроллер. Штука большая и сложная. По сути все программирование логики работы дома на солнце находится в ней. С фирмой я уже определился, это компания SMA. Первый вариант, который мне предложили, был модель SUNNY ISLAND 6.0H. 6.0 – это пиковая нагрузка кВт, которую устройство может держать минут 30, кажется. А нормальная нагрузка для нее порядка 4 кВт. Как понять, достаточно этого для дома или нет?

Я принялся считать пиковое потребление в доме. Весь дом я давно перевел на диодные ламы. Т.е. освещение берет очень мало, Если вообще все все включить в доме, то максимум 500 Вт будет. Далее большие потребители: электический чайник 2 кВт, электроплита 2Квт, стиралка, Сушилка по киловату. Я хотел, чтобы семья не задумывалась о потреблении и жила как на городоском электичестве. Как я не крутил, получалось, что утром мы можем поставить новую стиралку, ночную закинуть в сушилку, делать завтрак и кипятить воду для кофе. Это не очень частый сценарий, но вполне возможный. :) Будет не очень хорошо, если дом отключится в этот момент аварийно. Я опять подстраховался и взял модель SUNNY ISLAND 8.0H на 8 кВт в пике и 6 в рабочем режиме. Пока дом ни разу не выключился аварийно из-за пикового потребления.

Аккумуляторы. С ними была еще так головоломка. Опять несколько обзоров, графики живучести и списки производителей. Помогли мои консультанты. Я выбрал гелевые аккумуляторы фирмы MHB модель MNG200-12.

Мое потребление 8-10 кВт*час в день. Я решил взять аккумуляторы из расчета на два дня без выработки солнца. Признаться, я тогда упустил один очень важный показатель. Долговечность аккумулятора напрямую зависит от глубины разрядки. Т.е. если разряжать его не более чем на 30%, то проживут они 1800 циклов, это примерно на 5 лет. Но если разряжать на 100%, то проживут они всего 350 циклов, считай год. Год это совсем немного.

Подключил восемь аккумуляторов и они накапливают примерно 20 кВт*час. Уже после запуска всего проекта у меня перегорал предохранитель перед домом и мы узнали об этом только через два дня. Так что расчет на автономное питание на два дня оправдался. А вот накопление при 30% зарядке обеспечивает всего 5-6Квт/час, что явно окажется потом недостаточным для эффективной работы в полностью автономном режиме.

Нужно отметить, что вообще проблема накопления солнечной энергии является сегодня самой сложной и дорогой в решении. Многие услышали про проект Элона Маска с аккумуляторами. Если его аккумуляторы реально будут жить 10 лет при 100% перезарядке, это будет прекрасно. Мне бы хватило трех таких. Но я пока не нашел никакой информации про число циклов.

В августе схема подключения была готова и оборудование выбрано. К сборке станции АЕС-Центр приступили в октябре. Приехали ребята с альпинистским оборудованием, забрались на крышу и начали монтаж. Собирали и монтировали почти месяц.

Внутри дома я выделил место на чердаке. Там установили Контроллер, Инвертор, шкаф для аккумуляторов (противопожарный). Я запросил поставить автоматическую систему пожаротушения и систему принудительной вентиляции с датчиком.

Так же у меня есть рубильник, которым я могу одним махом переключить весь дом на городскую линию и полностью обесточить солнечную электростанцию. Подстраховался :)

Когда все было смонтировано, в один день мы переключили рубильник, и дом отключился от городской электросети и подключился к солнечной электрической станции!

Первый опыт

Итак. Большую часть года я обеспечиваю себя солнечной энергией с большим запасом. Вот май 2015 года. За месяц я выработал 745 кВт*час, потребил 300 кВт*час. Больше 0.5 Мегавата в плюс.

Вы видите, что в солнечный день станция выдает примерно 30-35 кВт*час, а потребляю я не больше 10 кВт*час. Т.е. летом я вырабатываю 300% необходимой мне энергии. Вот так выглядит график солнечного дня 6 июня 2015 года. Станция начинает давать энергию уже 7 утра. Пиковая выработка 4+ кВт*час и до 19 часов вечера работает генерация.

Я пишу эту статью 29 ноября. Сегодня был пасмурный день, низкие облака. Выработка составила всего 4 кВт*час примерно 50% от необходимой мне энергии.

А вот весь ноябрь этого года. Я смог себя обеспечить себя солнечной энергией всего на 40%

Весь год выглядит вот так. В августе ошибка в данных. У меня барахлил интернет пока мы были в отпуске и данные не засчитались. Но выработка была лучше июля.

Как вы видите, я обеспечиваю себя на 100% во все месяцы кроме 4 месяцев с ноября февраль. В эти месяцы обеспечение составляет 30-70%.

Подключение к городской электросети

В течении дня основная выработка солнечной энергии приходится на середину дня. А основное потребление на утро и вечер. В течение года максимум генерации приходится на лето, а зимой генерация минимальная.

Накапливать солнечную энергию сложно и дорого. Даже в течение дня излишек энергии некуда накапливать. Не говорю уже о том, чтобы накопить на зиму.

Первоначально мы запрограммировали Контроллер таким образом, чтобы он для дома брал энергию или от солнца или от аккумуляторов при разрядке не больше 40%. В зимний период такой режим работы оказался крайне неэффективным. Да и в летний период такой режим использования аккумуляторов оказался не самым оптимальным. Я терял электроэнергию днем, гонял батареи лишними циклами.

И в этот момент я как-то физически осознал, на сколько это большая проблема с накоплением энергии. Но пока эта проблема не решена, я решил, что нужно попробовать подключиться к городской сети и научиться крутить счетчик в обе стороны.

Подключение к городской сети позволяет использовать город как неограниченный аккумулятор. Любой излишек скидывать в него в любое время и при необходимости забирать обратно.

Я написал в FB просьбу познакомить меня с кем-то из Электросвязи. И о чудо, мне дали контакты одного из директоров Янтарьэнерго Михайлова Леонида Александровича. И я пошел к нему с просьбой подключить мою солнечную Электростанцию к городской электросети и разрешить крутить счетчик в обратном направлении, когда я отдаю энергию городу.

Михайлов Леонид Александрович, директор филиала “Янтарьэнерго”- прекрасный человек и профессионал. Внимательно выслушал меня, удивился всему проекту, понял с чем я пришел. И он захотел мне помогать! Причем сразу объяснил, что будет сложно, структура большая, задача новая, но стоит попробовать. Я написал заявление на подключение и стал ждать. Леонид Александрович неоднократно звонил мне, объяснял где сейчас находится вопрос. Вообще, такого внимательного отношения не встретишь со стороны коммерческих структур, а для большой госкорпорации это вообще удивительно. Когда дело дошло до Энергосбыта, я познакомился еще с одним прекрасным человеком, Алексеем Капыловым. Он тоже приложил все усилия, чтобы подключить меня к городской сети.

Всего пять месяцев ушло на выработку тех. условий по подключению. И вот в августе на пороге моего дома появилась целая бригада Янтарьэнерго. Они сняли старый счетчик и подключили новый, сертифицированный крутиться в обе стороны.

Как выяснилось, переток в городскую сеть выполняется очень просто. В городской сети напряжение 220 В. Мой Контроллер излишки энергии отдает в сеть с напряжением больше 220В (237 В кажется) и электрончики перетекают из моей сети в городскую, как вода в сообщающихся сосудах. Оказалось, что не нужно менять оборудование на подстанциях или вообще в городской сети. (город может принимать энергию!) Просто поставили новый счетчик и размыкатель (защита на случай авариных отключений).

Представьте себе сцену. Восемь мужиков громко радуются и шумят перед домом, когда после подключения к городу счетчик закрутился в обратную сторону :)

Мне сказали, что у меня первый дом в России, который официально скидывает электроэнергию в городские сети. Странно, конечно, если это так. Но и радостно, если это так. Надеюсь, что мои тех. условия пригодятся и позволят других подключать значительно проще.

Пока нет еще утвержденных тарифов на покупку энергии у таких как я. А так как это все монополии, то утверждать тарифы сложно. Но я и не жду, что мне кто-то заплатит. Самое главное для меня случилось. Счетчик крутится в обе стороны и город стал моим вторым аккумулятором.

Еще раз хочу сказать спасибо Михайлову Леониду Александровичу. Прямо вот очень круто, что вы есть. :)

Из текущих проблем с подключеним к городской сети пока остался только курьезный момент :) Я не могу занести в учетную системы энергосбыта актуальные значение счетчика. В акте на подключение в конце августа у меня было указано число 14011. Через пару месяцев уже было 13350, что говорит о том, что я генерировал энергии больше, чем потреблял. Но учетный софт не понимает уменьшение :) и мне приходится вводить пока первоначальное значение счетчика, чтобы получать нулевые счета за электричество. Ну и счета еще не приходят с нулем, какая-то автоматика выставляет про запас. Тут есть еще над чем работать.

Оптимальная конфигурация

Возможность подключения к городской сети принципиально меняет стратегию проектирования солнечной электростанции.

После подключения к городской сети мы перепрограммировали Контроллер. Теперь я не использую аккумуляторы для накопления солнечной энергии. Избыток солнца сразу скидывается в городскую сеть. Когда солнца не хватает, энергия берется из городской сети. Аккумуляторы используются только на случай аварийных отключений электроэнергии. В таком режим ожидания они спокойно проработают 20 лет и не потребуют замены.

Оптимальная конфигурация при наличии технических условий подключения к городской сети будет включать в себя всего два компонента: солнечные панели и инвертор. Всего этого по идее достаточно, чтобы сделать солнечную электростанцию и жить на солнечной энергии. Инвертор сам умеет устраивать переток в городскую сеть. Стоимость всего проекта получится на 50-60% дешевле. Соответственно окупаемость проекта значительно ускорится. У такого подключения будет только один недостаток, он не будет обеспечивать дом бесперебойным и резервным энергоснабжением. Но в городской сети это не так важно, возможно.

Экономическая рентабельность

Меня неоднократно спрашивали, окупится ли когда-то мой проект или нет. Я думаю, что именно мой проект полностью не окупится никогда :) Он сделан не для экономии. Ну и я местами сильно перезаложился от нехватки опыта. Хотя, по старому курсу покупки и в условиях подключения к городу, у него есть шанс окупиться за 10 лет.

Солнечные батареи рассчитаны на десятилетия. Потеря эффективности с возрастом незначительная. Надо только не забывать их протирать :) я делаю это раз в год. На все оборудование гарантия так же лет десять. Аккумуляторы я научился экономно использовать благодаря подключению к городу.

Я уверен, что можно сделать экономически рентабельное подключение, особенно если скидывать энергию в город. Панели и инвертор, вот и все что нужно. 5-7 лет будет вполне достижимый цикл окупаемости.

Возможно в будущем появятся более эффективные солнечные пластины или более надежные аккумуляторы. Я так же уверен, что появятся готовые наборы для перевода дома на солнечную энергетику и можно будет осуществить такой проект и значительно дешевле и значительно быстрее.

В завершение

У меня теперь есть новая привычка. В командировках я открываю мобильное приложение, чтобы узнать был ли солнечным день в Калининграде или нет. И по выработке солнечной энергии и графику я уже представляю, было ли небо безоблачным, с редкими облаками или шел дождь. :)

В момент публикации этой статьи на улице солнечно и дом работает в плюс на 1.8 кВт. Минус, в данном случае означает плюс :)

Спасибо моей любимой жене за терпение :) я испытывал его неоднократно. Особенно круто было зимой после подключения, я был в командировке, перегорел предохранитель на улице и дом, проработав два дня на аккумуляторах, выключился в 2 часа ночи при -20 градусах мороза.

Мне нравится, что мой дом работает на солнце и я больше отдаю энергии, чем потребляю. Возможно, это вообще главный принцип, которым нужно руководствоваться по жизни.

Если вам понравилась статья, создайте свой Битрикс24 :) не зря же она опубликована на этом замечательном сайте.

Примечание: Комментарии к статье вы можете просмотреть по ссылке на оригинал, указанной в начале публикации. Ну и здесь можете комментировать тоже.

altenergiya.ru

Подключение солнечных батарей к сети в России

Несмотря на то, что солнечные батареи в России становятся все более популярными, их применение в частном секторе сдерживается отсутствием нормативной и технической базы для подключения солнечных батарей к местным энергосетям.

На настоящий момент договор присоединения к электрическим сетям не предусматривает для частного лица возможности генерации электроэнергии в сеть. Разрешено только потребление. Более того, даже для организация и индивидуальных предпринимателей процедура и условия подключения к сетям генераторов электрической энергии являются такими, что оформление и поставка энергии от солнечных батарей в сеть становится бессмысленной.

Формально подключение солнечных батарей к сетям не запрещено. Необходимо пройти процедуру технологического подключения к местным энергосетям и заключить договор о поставке электроэнергии в сеть. Стоимость технологического подключения к сетям составляет десятки или даже сотни тысяч рублей. Покупать электроэнергию от генератора сети будут, скорее всего, по оптовым ценам рынка электроэнергии, которые меньше розничной цены на электроэнергию примерно в 3 раза. Но продажа электроэнергии от солнечных батарей в сеть на таких условиях бессмысленна. Во всех странах, где мы наблюдаем развитие солнечной энергетики, действуют различные механизмы, стимулирующие применение фотоэлектрических генераторов.

К числу основных таких мер и механизмов относятся:

  1. Обязательное подключение солнечных и ветровых электростанций к сетям (т.е. сети обязаны принимать от таких электростанций энергию)
  2. Компенсация стоимости технологического подсоединения — сети или подключают бесплатно, или стоимость этого подключения компенсируется из специальных фондов поддержки
  3. Специальные повышенные закупочные тарифы на электроэнергию от солнечных батареи и ветрогенераторов. Такой механизм популярен в Европе, он оказался наиболее эффективным — мы видим взрывной рост количества установленных солнечных и ветровых генераторов в странах, где этот механизм был принят — Германия, Испания, Италия, Великобритания и т.д.
  4. Net metering — принятие генерируемой солнечными батареями электроэнергии в зачет потребленной. Счетчик электроэнергии может быть реверсивным или двунаправленным. Обычно баланс считается за год, количество отданной электроэнергии в сеть вычитается из количества потребленной от сетей и заявленной к оплате электроэнергии. Таким образом, фактически сети выкупают обратно часть электроэнергии по розничной цене. Такой механизм принять в США и некоторых других странах. Он также показывает свою эффективность.
  5. Различные «зеленые сертификаты», субсидии, государственные программы — мы их здесь не рассматриваем, так как это не рыночные механизмы
  6. Налоговые льготы и т.п. — они также действуют как дополнительные меры поддержки, но для России их введение маловероятно.

В России для частных лиц не действует ни один из перечисленных выше механизмов поддержки. Солнечные батареи устанавливают в России не «благодаря», а «вопреки». Немалым стимулом служит ненадежность электроснабжения от местных энергосетей, изношенность электрических сетей низкого напряжения, низкое качество электроэнергии (напряжение в розетке может падать до 120-140В, а при перекосе фаз может и подниматься более 260В), постоянный рост цены на электроэнергию.

В последние годы надежность и доступность электроэнергии от местных энергосетей понемногу растет, что снизило заинтересованность в массовой установке своих источников электроэнергии в доме — солнечных батарей, ветряков и т.п. Но инициативы федеральных и местных властей по введению социальных норм на потребление электроэнергии вызвали взрывной рост интереса населения к автономным и местным источникам электроэнергии.

Особенно интересны теперь становятся солнечные батареи для тех, у кого для нагрева воды или отопления/охлаждения используется электричество (электрические водонагреватели, котлы, тепловые насосы, кондиционеры и т.п.) . В таких домах социальная норма очень быстро расходуется, и приходится платить в основном по повышенным тарифам сверх социальной нормы. Здесь применение солнечных батарей, соединенных с сетью, является экономически выгодным (не говоря уже о приобщении к экологически чистой энергетике и заботе о защите окружающей среды)

Какие есть способы предотвращения отдачи излишков солнечной электроэнергии в сеть?

Как можно избежать «накрутки» счетчика при работе солнечных батарей? Существуют несколько путей и мы их перечислим ниже.

  1. Не подключать систему с солнечными батареями к сети. Фактически, это означает установку автономной системы с аккумуляторами, в которой аккумуляторы будут заряжаться и разряжаться каждый день. Глубина разряда может быть существенной. Циклические режимы работы аккумуляторов с периодическими или постоянными глубокими разрядами резко сокращают срок службы аккумуляторов. Полностью отключать от сети даже часть нагрузки при наличии надежного централизованного электроснабжения неразумно. Такой вариант годится только в качестве эксперимента.
  2. Подключить систему к сети через гибридный батарейный инвертор, который может давать приоритет для солнечных батарей при питании нагрузки. Этот вариант возможен и работоспособен. До недавнего времени это был единственный способ при наличии сети обеспечить использование энергии от солнечных батарей не только во время аварий на сетях, но и тогда, когда сеть есть. Недостаток данной организации электроснабжения — необходимость наличия в системе аккумуляторов, гибридного батарейного инвертора, контроллера заряда для солнечных батарей. Достоинство — вы получаете резервную систему электроснабжения, которая может снабжать вашу нагрузку при авариях в энергосетях.Нужно учитывать, что не все гибридные инверторы могут запрещать передачу излишков электроэнергии от солнечных батарей в сеть. Если такой функции запрета нет, то энергия может проходить через счетчик обратно в сети.
  3. Использовать сетевой фотоэлектрический инвертор и двунаправленные счетчики электроэнергии. Этот вариант наиболее оптимальный и надежный. Электроэнергия от солнечных батарей преобразовывается в переменный ток с максимальной эффективностью и потребляется в момент генерации. Нет потерь на заряд-разряд аккумуляторов. Такой метод применяется там, где за отданную в сеть электроэнергию платят по повышенному тарифу или учитывают в общем балансе потребления (т.е. фактически принимают обратно по розничной цене за кВт*ч).  Счетчики могут быть многотарифными.До появления WATTrouter это был единственный способ не «попасть на деньги» при отдаче излишков электроэнергии в российские электросети. Двунаправленные счетчики учитывают отданную электроэнергию в отдельном регистре и не прибавляют ее к потребленной. Фактически, излишки электроэнергии дарятся местным электрическим сетям. Однако и в этом случае может возникнуть проблема — если на группу домовладений установлен общий однонаправленный  счетчик электроэнергии, нужно, чтобы соседи потебляли излишки, генерируемые солнечными батареями. В противном случае показания общего счетчика не совпадут с суммой показаний отдельных домовых счетчиков.
  4. Использовать двунаправленный индукционный счетчик, который может крутиться в обратную сторону, если идет отдача электроэнергии в сеть. На настоящее время разрешен к применению в России только один такой счетчик — СО-505. Но и он уже снят с производства и в новых или модернизируемых домах/квартирах его установить уже невозможно.
  5. Использовать систему с отдачей электроэнергии в сеть совместно с WATTrouter. Излишки электроэнергии могут поступать как от гибридных инверторов с разрешенной отдачей в сеть, так и от фотоэлектрических инверторов. В отличие от всех вышеперечисленных случаев, электроэнергия от солнечных батарей используется полностью и с максимальной эффективностью, отдачи электроэнергии в сеть нет. Это является наилучшим вариантом организации электроснабжения с солнечными батареями. Можно использовать практически любые счетчики.
  6. Последние пару лет появилась еще одна возможность не отдавать энергию от солнечных батарей в сеть — это сетевые фотоэлектрические инверторы с датчиком тока, устанавливаемым сразу после счетчика и регулировкой генерации в зависимости от наличия излишков. Такие сетевые инверторы имеют возможность подключения отдельного блока, отслеживающего излишки, и дающего команду инвертору снизить генерацию. Есть несколько вариантов решения этой задачи. Например, немецкие инверторы Steca требуют кроме специального инвертора и устройства слежения за излишками еще и специальный счетчик. Инверторы SMA также требуют специальную систему мониторинга. При этом немецкие инверторы не могут полностью ограничить отдачу в сеть, т.к. у них нет такой задачи, и время регулирования у них довольно большое.Есть китайские инверторы — как дешевые, так и более дорогие (Sofarsolar, Growatt)Это решение, хотя и предотвращает отдачу энергии в сеть, имеет большой недостаток — неполное использование энергии от солнечных батарей. При наличии излишка генерации снижается выработка от солнечных батарей. Да и стоит комплект сетевого инвертора и  дополнительного контроллера дороже, чем просто сетевой инвертор.

Использование контроллера WATTRouter  позволяет максимально использовать энергию солнца и направлять излишки по умному алгоритму на нагрев и другие второстепенные нагрузки.

www.wattrouter.ru

Схемы монтажа и способы подключения солнечных батарей

Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?

Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая “зеленую энергию” в электричество, необходимое для питания бытового оборудования.

Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.

Устройство солнечной батареи

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта батарей на фотоэлектрических элементах, основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи – контроллер и инвертор, а также подключенные к ним аккумуляторы

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Где лучше установить панели?

Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.

Для установки фотоэлектрических модулей удобно использовать стационарные конструкции, выполненные из металлических профилей, либо же более модернизированные поворотные аналоги

Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:

  • на крыше загородного коттеджа;
  • на балконе многоквартирного дома;
  • на прилегающей к дому территории.

Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.

В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.

Чтобы обеспечить максимальную производительность солнечных батарей, угол наклона устройств рекомендуется менять 2-4 раза в год: 18 апреля, 24 августа, 7 октября и 5 марта

К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.

При размещении солнечных батарей на прилегающей к дому территории, панели лучше приподнять над поверхностью почвы как минимум на полметра – на случай выпадения большого количества снега. Такое решение правильно и в том плане, что обеспечивает достаточное расстояние для циркуляции воздуха.

Стоит помнить, что даже небольшая тень пагубно влияет на выработку электричества агрегатом. Панели нужно размещать лишь в местах, которые не подвержены даже малейшему затенению.

Некоторые «умельцы» с целью защиты батарей устанавливают сверху панелей дополнительное стекло, но даже при видимой прозрачности стеклянная прослойка способна снизить КПД панелей на 30%

Существует несколько способов фиксации панелей:

  • посредством задействования прижимных фиксаторов;
  • путем болтового соединения через сквозные отверстия, расположенные в нижней части рамки.

Опорная конструкция должна быть выполнена из корозионностойких материалов. Независимо от способа монтажа в конструкцию панелей нельзя самостоятельно вносить изменения и просверливать дополнительные отверстии.

Задача домовладельца – поддерживать панели в чистом виде. Скопления на экране пыли, снега и птичьего помета как минимум на 10% уменьшает количество электроэнергии, произведенной системой.

Варианты соединения гелиобатарей

Солнечные батареи состоят из нескольких отдельных панелей. Чтобы увеличить выходные параметры системы в виде мощности, напряжения и тока, элементы присоединяют друг к другу, применяя законы физики.

Соединение нескольких панелей между собой можно выполнить, применив одну из трех схем монтажа солнечных батарей:

  • параллельная;
  • последовательная;
  • смешанная.

Параллельная схема предполагает подключение одноименных клемм друг к другу, при котором элементы имеют два общих узла схождения проводников и их разветвления.

При параллельной схеме «плюсы» соединяются с «плюсами», а «минусы» с «минусами», в результате чего выходной ток увеличивается, а напряжение на выходе остается в пределах 12 Вольт

Величина максимально возможного тока на выходе при параллельной схеме прямо пропорциональна количеству подключенных элементов. Принципы расчета количества приведены в рекомендуемой нами статье.

Последовательная схема предполагает подключение противоположных полюсов: «плюс» первой панели к «минусу» второй. Оставшийся незадействованный «плюс» второй панели и «минус» первой батареи подключают к расположенному дальше по схеме контроллеру.

Такой вид соединения создает условия для протекания электрического тока, при котором остается единственный путь для передачи энергоносителя от источника к потребителю.

При последовательной схеме подключения напряжение на выходе увеличивается и достигает отметки в 24 Вольт, чего бывает достаточно для запитки портативной техники, светодиодных ламп и некоторых электроприемников

Последовательно-параллельную или смешанную схему чаще всего используют при необходимости соединения нескольких групп батарей. Посредством применения этой схемы на выходе можно увеличить и напряжение и ток.

Такой вариант выгоден и в том плане, что в случае выхода из строя одного из конструктивных элементов системы, другие связующие цепи продолжают функционировать. Это существенно повышает надежность работы всей системы.

При последовательно-параллельной схеме подключения напряжение на выходе достигает отметки, характеристики которой наиболее подходят для решения основной массы бытовых задач

Принцип сборки комбинированной схемы построен на том, что устройства внутри каждой группы соединяются параллельно. А подключение всех групп в одну цепь осуществляется последовательно.

Комбинируя разные типы соединений, не составит труда собрать батарею с необходимыми параметрами. Главное – число соединенных элементов должно быть таким, чтобы подводимое к аккумуляторам рабочее напряжение с учетом его падения в зарядной цепи превышало напряжение самих аккумуляторов, а нагрузочный ток батареи при этом обеспечивал необходимую величину зарядного тока.

Схема сборки солнечной электросистемы

Подключение солнечных панелей осуществляется посредством задействования встроенных соединительных проводов сечением в 4 мм2. Лучше всего для этой цели подходят одножильные медные провода, изоляционная оплетка которых устойчива к ультрафиолетовому излучению.

В случае использования провода, изоляция которого не устойчива к воздействию УФ-лучей, его наружную прокладку рекомендуется выполнять гофрорукаве.

Конец каждого провода соединен с разъемом стандарта МС4 посредством пайки или обжима, благодаря чему обеспечивается герметичное соединение

Независимо от выбранной схемы перед подключением солнечных панелей в обязательном порядке необходимо проверить правильность электромонтажа.

При подключении панелей не рекомендуется превышать технические требования по допустимому току и максимальному напряжению других устройств. Важно придерживаться указанных производителем технических требований контроллера заряда и инвертора.

Стандартная схема сборки самой простой солнечной электростанции выглядит следующим образом.

Схема подключения панелей к аккумулятору, инвертору и контроллеру имеет простое исполнение, а потому особых сложностей в подключении не вызывает

Чтобы избежать поломки контроллера, при подключении элементов системы важно соблюдать последовательность.

Монтажные работы выполняют в несколько этапов:

  1. Аккумулятор подключают к контроллеру, задействуя для этого соответствующие разъемы и не забывая соблюдать полярность.
  2. К контроллеру через разъемы при соблюдении все той же полярности присоединяют солнечную батарею.
  3. К разъемам контроллера подключают нагрузку в 12 В.
  4. Если необходимо преобразовать электрическое напряжение с 12 до 220 В, то в схему включают инвертор. Его подключают только к аккумулятору и ни в коем случае не напрямую к контроллеру.
  5. К свободному выходу инвертора подключают электроприборы, рассчитанные на напряжение в 220 В.

Выполнив соединение, нужно проверить полярность и измерить напряжение холостого хода панелей. Если показатель отличается от паспортного значения – соединение выполнено неправильно.

Для подключения устройства к системе нет необходимости вскрывать распаечную монтажную коробку – все соединительные разъемы расположены в доступности

На завершающем этапе солнечную батарею необходимо заземлить. Чтобы минимизировать вероятность короткого замыкания, в местах соединения между аккумулятором, инвертором и контроллером устанавливают предохранители.

Желающим соорудить солнечную батарею собственноручно поможет информация, приведенная в следующей статье.

Подключение разнонаправленных элементов

Применяя последовательную схему монтажа солнечных батарей, чтобы не снизить эффективность работы устройств, все панели общей цепи следует размещать под одним углом и на одной плоскости.

Если же панели будут располагаться в различных плоскостях, это может привести к тому, что ближняя или более освещенная станет работать мощнее расположенных чуть дальше.

Это значит, что ближняя панель будет генерировать электричество, часть которого будет отходить для нагрева дальних панелей. И причина кроется в том, что ток течет по пути наименьшего сопротивления. Чтобы минимизировать потери, для каждой панели лучше задействовать отдельный контроллер.

Основные требования при задействовании контроллера – мощность подключаемых панелей свыше 1 кВт и удаленность между батареями на достаточно большое расстояние

Решить вопрос можно и путем установки отсекающих диодов. Их размещают внутри между пластинами. Благодаря этому, выдавая максимальный показатель мощности, пластины не перегреваются.

Немаловажное значение имеет и падение напряжения в соединениях, а также самих проводах низковольтной части системы.

Таблица несоответствия передаваемой мощности сечению провода, красным указывающая параметры, при которых возникает риск сильного пожароопасного нагрева

В качестве примера может служить тот факт, что на метровый отрезок кабеля сечением 4 мм2 при прохождении тока показателем 80А (напряжение 12 В) значения падают на 3,19%, что составляет 30,6 Вт. При задействовании скруток падение напряжения может варьироваться в пределах от 0,1 до 0,3 В.

Совмещение гелиоэнергии и стационарной сети

Планируя использовать электроэнергию от солнца параллельно с обустроенной централизованной стационарной сетью, схему подключения делают несколько иной. И основная причина такого решения в том, что у частного потребителя нет возможности «сбрасывать» оставшуюся энергию.

А это может спровоцировать перепады напряжения длительностью до одной секунды.

При совмещении солнечной электроэнергии со стационарной централизованной сетью руководствуются все тем же правилом: чем больше источников подключается, тем сложнее становится схема

Согласно выше приведенной схеме, напряжение от гелиополя первым делом направляется в сторону АКБ, а уже оттуда и передается на нагрузку.

Проектируя такой вариант монтажа в расчет стоит брать два вида нагрузки:

  • не резервируемая – свет в доме, бытовая техника и пр.;
  • резервируемая – аварийное освещение, холодильник, электрический котел.

Учитывайте: чем больше емкость аккумулятора, тем больше проработают в автономном режиме резервируемые электроприборы.

Выбирая такой способ генерации энергии в сеть, будьте готовы к тому, что придется оформлять разрешение в местных энергосетях.

Несмотря на то, что инверторы для солнечных батарей вырабатывают напряжение, качество которого порой выше того, что в централизованной сети, местные энергосети не дают добро на то, чтобы электросчетчик вращался в обратную сторону.

По этой причине согласно схеме солнечные инверторы прекращают работу в момент пропадания напряжения в сети. А резервируемая нагрузка начинает «запитываться» от АКБ.

Выводы и полезное видео по теме

Авторы видеоматериала, который предоставлен ниже, делятся личным опытом и разбирают нюансы монтажа гелиопанелей.

Видео #1. Пример сборки и монтажа системы заводского образца:

Видео #2. Как правильно установить панели:

Ничего сложного в процессе соединения нескольких панелей с другими элементами системы нет. Но для начинающего мастера процесс может стать затруднительным. Поэтому при отсутствии опыта в расчетах и навыков монтажа стоит обратиться к специалисту, владеющему необходимыми знаниями.

Хотите рассказать, как собирали собственную солнечную электростанцию для дачи или загородного дома? Возможно, вам известны тонкости процесса, не описанные в статье? Пишите, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы, делитесь мнением и фото по теме статьи.

sovet-ingenera.com


Смотрите также