Источник резервного питания


Источники бесперебойного и резервного питания

Об источниках бесперебойного и резервного питания для систем ОПС написано немало, тем не менее часто отсутствует даже единообразная терминология, поэтому начнем именно с терминологии.

Итак, различают источники резервного (гарантированного) питания и источники бесперебойного питания.

Источник резервного (гарантированного) питания используется, когда система или какая-то из ее составляющих постоянно питаются от основного источника питания. Резервный источник подключается лишь при пропадании напряжения в основной питающей цепи. В зависимости от модели блока питания подключение может происходить в ручном или автоматическом режиме. Источники резервного питания можно рассматривать как зарядные устройства АКБ.

Источники бесперебойного питания или источники вторичного электропитания резервированные (ИВЭПР) предназначены для питания аппаратуры, которая не имеет своего встроенного сетевого источника питания. Они должны всегда обеспечивать питание нагрузки с указанными параметрами.

Источник бесперебойного питания одновременно выполняет функции и основного, и резервного. То есть, если в основной цепи напряжение по каким-то причинам пропадает, источник в автоматическом режиме переходит на резервное питание. Подобные блоки состоят из сетевого источника питания достаточной мощности, зарядного устройства для аккумуляторной батареи (АКБ) и схемы переключения нагрузки с сетевого источника на АКБ.

Специалисты выделяют еще одну группу: источники бесперебойного питания гибридного типа. Это буферные источники питания. Данные устройства можно рассматривать как источники бесперебойного или как резервного питания в зависимости от того, как будет распределена величина тока стабилизатора между током заряда АКБ и током нагрузки. Использование источников этого типа предоставляет возможность пользователю выбирать, что ему необходимо, — сокращение времени заряда АКБ за счёт увеличения тока заряда в пределах зарядных характеристик или перераспределения большей величины тока стабилизатора на нагрузку, сокращая при этом ток заряда АКБ, что приведёт к возрастанию времени её зарядки.

Системы резервирования всего объекта – это, как правило, системы достаточно большой мощности (от 0,5 до 100 кВт). Они обеспечивают подачу в сеть напряжения 220 В частотой 50 Гц, которым и питаются все вторичные источники. В основном для этой цели применяются бензиновые или дизельные электростанции, хотя в последнее время рынок все больше начинают завоевывать инверторные источники питания, работающие от аккумуляторов, а также комбинированные системы с использованием так называемых альтернативных источников энергии (ветродвигатели, солнечные батареи и т.п.).

Автономные источники бесперебойного или резервного питания, обеспечивающие подачу электроэнергии на одно или несколько устройств или систем. Эти источники имеют мощность до 500 Вт и обеспечивают выходные напряжения, характерные для питания приборов охранно-пожарной сигнализации и связи, а именно 12, 24 и 60 В постоянного тока.

Встроенные в прибор или узел системы резервного питания – это гальванические элементы или аккумуляторы, которые нужно периодически подзаряжать с помощью внешнего устройства. В более сложных системах аккумулятор подзаряжается от встроенного в изделие зарядного устройства.

Какую схему организации резервного или бесперебойного питания наиболее целесообразно использовать для систем ОПС? В этом вопросе эксперты практически единодушны: автономные источники питания. Это решение предпочтительнее как с технологической точки зрения, так и по стоимости. Именно использование отдельных источников питания относительно небольшой мощности позволяет подобрать оптимальное решение конкретной задачи, подключая к одному источнику группу приборов с тем или иным напряжением питания и токопотреблением. В большинстве случаев удобнее использовать источники бесперебойного питания, так как в этом случае отпадает необходимость использования отдельного преобразователя (адаптера) напряжения сети 220 В для постоянного питания конкретного прибора необходимым напряжением (как уже отмечалось, источник бесперебойного питания выполняет функции и основного и резервного источников одновременно). Тем не менее, если прибор оснащен собственным сетевым адаптером или устройство в дежурном режиме не потребляет энергии, а потребляет ее от случая к случаю (например, в системах автоматического пожаротушения), целесообразно применять источники резервного питания, так как их цена ниже цены источников бесперебойного питания.

Время резервирования определяется, в основном, двумя параметрами — током потребления питающихся от источника приборов и характеристиками применяемых химических источников тока.

Незаряжаемые одноразовые химические источники тока (батарейки) применяются, в основном, при использовании той схемы резервирования, когда батарейка является составной частью прибора. Целесообразность такого варианта питания очевидна при использовании, например, радиоканала связи между различными частями системы. То есть, когда части системы не соединяются проводами и каждый ее элемент питается от встроенной батарейки.

В независимых блоках бесперебойного и резервного питания, как правило, используются аккумуляторные батареи, которые могут заряжаться как встроенным в блок, так и внешним зарядным устройством.

Несколько слов о применяемых в системах ОПС аккумуляторных батареях.

По типу используемого химического процесса все аккумуляторы можно условно разделить на две большие группы — щелочные аккумуляторы и кислотные. В свою очередь, каждая из этих групп может быть разделена на подгруппы по целому ряду различных параметров. При этом каждому типу присущи свои достоинства и недостатки.

К основным достоинствам щелочных аккумуляторов можно отнести тот факт, что они не боятся глубокого разряда. Однако при работе в составе систем ОПС это достоинство использовать достаточно сложно. К примеру, допустимое напряжение питания какого-либо прибора ОПС лежит в пределах 9—14 В, а щелочная аккумуляторная батарея с номинальным напряжением 12 В может без ущерба быть разряжена до напряжения 3 В, однако при этом от нее уже не сможет нормально работать данный прибор. Недостатков же у щелочных аккумуляторов хватает, и к наиболее существенному необходимо отнести невозможность отбора от этих аккумуляторов больших токов, даже в кратковременном режиме потребления. Те же щелочные аккумуляторы, которые допускают большие разрядные токи, имеют очень высокую стоимость.

Что касается кислотных аккумуляторов (в первую очередь, относительно дешевых свинцово-кислотных), то до недавнего времени их основными недостатками являлись боязнь глубокого разряда и хлопотность использования агрессивного жидкого электролита на основе серной кислоты. Однако в 80-х годах мир начали активно завоевывать так называемые герметичные необслуживаемые свинцово-кислотные аккумуляторы (в зависимости от конструктивных особенностей внутреннего устройства они подразделяются на типы GP, HP, HV и т.п.). Их устройство таково, что они не требуют обслуживания и не выделяют наружу вредных веществ, что позволяет устанавливать их в помещениях, где постоянно находятся люди. Кроме того (и это, возможно, самое главное), они являются аккумуляторами глубокого разряда, то есть допускают отбор до 80% их номинальной емкости.

Единственным параметром источников питания, фигурирующим в нормативных документах по оснащению объектов системами ОПС, является длительность резервирования электропитания объектов. Для особо важных объектов эта длительность составляет 24 часа. Однако если объект включен в так называемый «список № 2», то есть перебои в энергоснабжении этого объекта от центральных электрических сетей не должны превышать 2 часов в сутки, требования к длительности могут быть снижены до 2,5 часа.

Отсутствием нормативных документов объясняется, в первую очередь, разнообразие применяемых на практике источников и еще большее разнообразие мнений относительно критериев выбора источника питания для конкретного объекта. К сожалению, многие поставщики резервированных источников (конечно, не производители, а торгующие организации) не обладают достаточной технической грамотностью, не говоря уже о наличии собственной лабораторно-технической базы. Это приводит к невозможности проверки и подтверждения параметров источников питания, заявляемых в рекламных, а иногда и в сопроводительных технических материалах перед попаданием изделия к конечному потребителю. А эта проверка, как показывает практика, оказывается далеко не лишней. Причем дело здесь отнюдь не в недобросовестности производителей или поставщиков оборудования, а опять-таки в отсутствии единых требований и норм, в том числе и отсутствие единообразия в терминологии.

В качестве классического примера можно привести заявляемый максимальный выходной ток, который источник способен отдать в нагрузку. В данном случае часто смешивают понятия «номинальный ток», то есть ток, который может потребляться от источника в долговременном (круглосуточном) режиме, «максимально допустимый ток источника», то есть ток, допускаемый в кратковременных режимах или импульсах (при этом должно указываться допустимое время потребления), и «максимальный выходной ток стабилизатора», то есть суммарный ток, выдаваемый источником, который может перераспределяться между током нагрузки, током, отбираемым для зарядки аккумуляторов, и токами для питания дополнительных внутренних или внешних сервисных устройств.

Основными параметрами, характеризующими источники питания, являются: — выходное напряжение источника питания, — уровень пульсаций выходного напряжения (величина напряжения пульсаций), — выходной ток, — пределы изменения напряжения питающей сети, — величина напряжения на АКБ, при котором происходит автоматическое отключение нагрузки, — максимальная мощность, потребляемая источником от питающей сети,

— ёмкость встроенной АКБ, ток или время полного заряда АКБ заданной ёмкости.

os-info.ru

Радиосвязь

Источник резервного (гарантированного) питания используется, когда система или какая-то из ее составляющих постоянно питаются от основного источника питания. Резервный источник подключается лишь при пропадании напряжения в основной питающей цепи. В зависимости от модели блока питания подключение может происходить в ручном или автоматическом режиме. Источники резервного питания можно рассматривать как зарядные устройства АКБ. Источники бесперебойного питания или источники вторичного электропитания резервированные (ИВЭПР) предназначены для питания аппаратуры, которая не имеет своего встроенного сетевого источника питания. Они должны всегда обеспечивать питание нагрузки с указанными параметрами. Источник бесперебойного питания одновременно выполняет функции и основного, и резервного. То есть, если в основной цепи напряжение по каким-то причинам пропадает, источник в автоматическом режиме переходит на резервное питание. Подобные блоки состоят из сетевого источника питания достаточной мощности, зарядного устройства для аккумуляторной батареи (АКБ) и схемы переключения нагрузки с сетевого источника на АКБ. Специалисты выделяют еще одну группу: источники бесперебойного питания гибридного типа. Это буферные источники питания. Данные устройства можно рассматривать как источники бесперебойного или как резервного питания в зависимости от того, как будет распределена величина тока стабилизатора между током заряда АКБ и током нагрузки. Использование источников этого типа предоставляет возможность пользователю выбирать, что ему необходимо, - сокращение времени заряда АКБ за счёт увеличения тока заряда в пределах зарядных характеристик или перераспределения большей величины тока стабилизатора на нагрузку, сокращая при этом ток заряда АКБ, что приведёт к возрастанию времени её зарядки. Системы резервирования всего объекта – это, как правило, системы достаточно большой мощности (от 0,5 до 100 кВт). Они обеспечивают подачу в сеть напряжения 220 В частотой 50 Гц, которым и питаются все вторичные источники. В основном для этой цели применяются бензиновые или дизельные электростанции, хотя в последнее время рынок все больше начинают завоевывать инверторные источники питания, работающие от аккумуляторов, а также комбинированные системы с использованием так называемых альтернативных источников энергии (ветродвигатели, солнечные батареи и т.п.). Автономные источники бесперебойного или резервного питания, обеспечивающие подачу электроэнергии на одно или несколько устройств или систем. Эти источники имеют мощность до 500 Вт и обеспечивают выходные напряжения, характерные для питания приборов охранно-пожарной сигнализации и связи, а именно 12, 24 и 60 В постоянного тока. Встроенные в прибор или узел системы резервного питания – это гальванические элементы или аккумуляторы, которые нужно периодически подзаряжать с помощью внешнего устройства. В более сложных системах аккумулятор подзаряжается от встроенного в изделие зарядного устройства. Какую схему организации резервного или бесперебойного питания наиболее целесообразно использовать для систем ОПС? В этом вопросе эксперты практически единодушны: автономные источники питания. Это решение предпочтительнее как с технологической точки зрения, так и по стоимости. Именно использование отдельных источников питания относительно небольшой мощности позволяет подобрать оптимальное решение конкретной задачи, подключая к одному источнику группу приборов с тем или иным напряжением питания и токопотреблением. В большинстве случаев удобнее использовать источники бесперебойного питания, так как в этом случае отпадает необходимость использования отдельного преобразователя (адаптера) напряжения сети 220 В для постоянного питания конкретного прибора необходимым напряжением (как уже отмечалось, источник бесперебойного питания выполняет функции и основного и резервного источников одновременно). Тем не менее, если прибор оснащен собственным сетевым адаптером или устройство в дежурном режиме не потребляет энергии, а потребляет ее от случая к случаю (например, в системах автоматического пожаротушения), целесообразно применять источники резервного питания, так как их цена ниже цены источников бесперебойного питания. Время резервирования определяется, в основном, двумя параметрами — током потребления питающихся от источника приборов и характеристиками применяемых химических источников тока. Незаряжаемые одноразовые химические источники тока (батарейки) применяются, в основном, при использовании той схемы резервирования, когда батарейка является составной частью прибора. Целесообразность такого варианта питания очевидна при использовании, например, радиоканала связи между различными частями системы. То есть, когда части системы не соединяются проводами и каждый ее элемент питается от встроенной батарейки. В независимых блоках бесперебойного и резервного питания, как правило, используются аккумуляторные батареи, которые могут заряжаться как встроенным в блок, так и внешним зарядным устройством. Несколько слов о применяемых в системах ОПС аккумуляторных батареях. По типу используемого химического процесса все аккумуляторы можно условно разделить на две большие группы — щелочные аккумуляторы и кислотные. В свою очередь, каждая из этих групп может быть разделена на подгруппы по целому ряду различных параметров. При этом каждому типу присущи свои достоинства и недостатки. К основным достоинствам щелочных аккумуляторов можно отнести тот факт, что они не боятся глубокого разряда. Однако при работе в составе систем ОПС это достоинство использовать достаточно сложно. К примеру, допустимое напряжение питания какого-либо прибора ОПС лежит в пределах 9—14 В, а щелочная аккумуляторная батарея с номинальным напряжением 12 В может без ущерба быть разряжена до напряжения 3 В, однако при этом от нее уже не сможет нормально работать данный прибор. Недостатков же у щелочных аккумуляторов хватает, и к наиболее существенному необходимо отнести невозможность отбора от этих аккумуляторов больших токов, даже в кратковременном режиме потребления. Те же щелочные аккумуляторы, которые допускают большие разрядные токи, имеют очень высокую стоимость. Что касается кислотных аккумуляторов (в первую очередь, относительно дешевых свинцово-кислотных), то до недавнего времени их основными недостатками являлись боязнь глубокого разряда и хлопотность использования агрессивного жидкого электролита на основе серной кислоты. Однако в 80-х годах мир начали активно завоевывать так называемые герметичные необслуживаемые свинцово-кислотные аккумуляторы (в зависимости от конструктивных особенностей внутреннего устройства они подразделяются на типы GP, HP, HV и т.п.). Их устройство таково, что они не требуют обслуживания и не выделяют наружу вредных веществ, что позволяет устанавливать их в помещениях, где постоянно находятся люди. Кроме того (и это, возможно, самое главное), они являются аккумуляторами глубокого разряда, то есть допускают отбор до 80% их номинальной емкости. Единственным параметром источников питания, фигурирующим в нормативных документах по оснащению объектов системами ОПС, является длительность резервирования электропитания объектов. Для особо важных объектов эта длительность составляет 24 часа. Однако если объект включен в так называемый «список № 2», то есть перебои в энергоснабжении этого объекта от центральных электрических сетей не должны превышать 2 часов в сутки, требования к длительности могут быть снижены до 2,5 часа. Отсутствием нормативных документов объясняется, в первую очередь, разнообразие применяемых на практике источников и еще большее разнообразие мнений относительно критериев выбора источника питания для конкретного объекта. К сожалению, многие поставщики резервированных источников (конечно, не производители, а торгующие организации) не обладают достаточной технической грамотностью, не говоря уже о наличии собственной лабораторно-технической базы. Это приводит к невозможности проверки и подтверждения параметров источников питания, заявляемых в рекламных, а иногда и в сопроводительных технических материалах перед попаданием изделия к конечному потребителю. А эта проверка, как показывает практика, оказывается далеко не лишней. Причем дело здесь отнюдь не в недобросовестности производителей или поставщиков оборудования, а опять-таки в отсутствии единых требований и норм, в том числе и отсутствие единообразия в терминологии. В качестве классического примера можно привести заявляемый максимальный выходной ток, который источник способен отдать в нагрузку. В данном случае часто смешивают понятия «номинальный ток», то есть ток, который может потребляться от источника в долговременном (круглосуточном) режиме, «максимально допустимый ток источника», то есть ток, допускаемый в кратковременных режимах или импульсах (при этом должно указываться допустимое время потребления), и «максимальный выходной ток стабилизатора», то есть суммарный ток, выдаваемый источником, который может перераспределяться между током нагрузки, током, отбираемым для зарядки аккумуляторов, и токами для питания дополнительных внутренних или внешних сервисных устройств. Основными параметрами, характеризующими источники питания, являются: - выходное напряжение источника питания, - уровень пульсаций выходного напряжения (величина напряжения пульсаций), - выходной ток, - пределы изменения напряжения питающей сети, - величина напряжения на АКБ, при котором происходит автоматическое отключение нагрузки, - максимальная мощность, потребляемая источником от питающей сети, - ёмкость встроенной АКБ, ток или время полного заряда АКБ заданной ёмкости.

www.radioprofessional.info

ВИДЫ ИСТОЧНИКОВ ЭЛЕКТРОПИТАНИЯ

ПЕРВИЧНЫЕ - ВТОРИЧНЫЕ - БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ

Правила устройства электроустановок (ПУЭ) определяют такие понятия, как энергетическая система и система энергоснабжения. При этом не конкретизируются устройства, в эти системы входящие.

С чего начинается работа любой электроустановки (от карманного фонарика до персонального компьютера или холодильника)? С подключения к электропитанию.

Общее определение: источник электропитания – это устройство для производства, преобразования электроэнергии, подачи напряжения в аварийных ситуациях.

Под эту категорию подпадает достаточно много устройств. Для большинства потребителей знакомы такие понятия, как электростанции, трансформаторные подстанции, генераторы, аккумуляторы, одноразовые батарейки. Кроме того, каждый держал в руках зарядное устройство для телефона или БП для ноутбука. Это и есть источники питания во всем разнообразии.

Для рядового потребителя взаимодействие с подобными устройствами упрощено до минимума:

  • вилка в розетку;
  • батарейка в корпус;
  • выключатель нажать.

Интерес к устройству возникает лишь при его поломке.

Разберем основные их типы.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

К ним относятся устройства, которые генерируют электроэнергию, не имея на входе напряжения. Выполняется преобразование любого другого вида энергии в электрическую. Из ничего получить что-либо невозможно (доказано Эйнштейном). Поэтому генерирующие установки используют силы природы.

Для получения электричества можно использовать три вида энергии: механическую, тепловую, либо световую. Соответственно, любой источник первичного питания относится к этим группам.

Механическая энергия.

С ее помощью вращается ротор генератора, вследствие чего на его обмотках возникает электрический ток. Крутящий момент можно извлечь разными способами:

  1. Гидроэлектростанции получают его за счет перепада давления между уровнями воды (для этого строят плотины). Грамотно спроектированные турбины под непосредственным влиянием этих сил передают вращение на генератор. Это достаточно дешевый способ получения энергии, поскольку течение реки условно бесплатно.
  2. Еще один способ получить пользу из воды – генераторы, работающие от перепада уровня на линии прибоя, или прилива-отлива. Такие установки более сложные в техническом плане, но при отсутствии рядом полноводных рек, работают эффективно.
  3. Ветровые станции также работают не везде. Необходимо постоянное линейное движение воздуха. Отношение стоимости производства к выдаваемой мощности на порядок хуже, чем у гидроэлектростанций, однако такие генерирующие системы более экологичны.

Тепловая энергия.

Сразу оговоримся: электричество получают не напрямую от тепла, хотя есть опытные образцы термопар. Но до промышленного применения им еще далеко. С помощью тепла банально кипятится вода, полученный пар вращает турбину. А дальше – как в гидроэлектростанции.

Так что тепловые генераторы – это тоже механика.

Атомная электростанция.

Самый яркий представитель в этой категории – . При ядерном распаде выделяется огромное количество тепла. Вода нагревается очень эффективно, нет зависимости от природных явлений. Главная задача – жесточайший контроль над безопасностью. Экологи разумеется против, но если к ним прислушиваться, придется отказаться от технического прогресса.

Тепловая электростанция.

Энергию получают, сжигая горючие материалы. Это может быть природный газ, уголь, мазут, солярка, и даже дрова. Экологичность генерации напрямую зависит от используемого топлива. Экономически такие установки выгодны лишь там, где в пределах транспортной доступности имеются большие запасы топлива.

Часто ТЭС строят в регионах, где нет возможности получить энергию иным способом (про эффективность в таком случае можно забыть). Просто стоимость возведения атомной станции не всегда оправдывается необходимостью в электричестве. Да и противопоказаний у АЭС слишком много (например, сейсмические риски).

Световая энергия.

Установки обычно называют солнечными электростанциями, хотя это не совсем верно. Фотоэлементы работают не только от прямых солнечных лучей. Для «старта» достаточно обычного дневного света даже при 100% облачности. Преобразования в механику не требуются: фотоэлементы сразу вырабатывают электроток.

Представители Greenpeace и им подобных организаций считают эту энергию самой чистой, однако это в корне неверно. Во-первых, никто не занимался изучением влияния вынужденной тени от огромных площадей солнечных батарей на земную кору. Во-вторых, производство и утилизация фотоэлементов далеко не экологичный процесс.

Тем не менее, наряду с АЭС, они относятся к перспективным.

Недостатков всего два:

  1. Очевидно, что ночью электростанция не работает. Следовательно, необходимо накапливать электроэнергию с помощью аккумуляторных батарей, либо встраивать такие генерирующие системы в некие единые сети, где каждый источник дополняет друг друга.
  2. Стоимость подобных станций слишком высока.

Химические источники питания вроде как держатся особняком, но это также первичные генераторы электроэнергии. Важно: Речь идет о батарейках, не путать с аккумуляторами.

Для получения электричества используется химическая реакция. Несмотря на то, что энергия получается напрямую, без преобразования в механическую, экономика таких источников питания крайне низкая. Высокая стоимость элементов питания и необходимость постоянного обновления, не позволяет использовать эту энергию массово.

В начало

ИСТОЧНИКИ ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ

Для получения требуемых параметров электропитания, необходимо синхронизировать всех потребителей с генерирующими системами. Это невозможно по целому ряду причин:

  • элементная база электронных устройств работает на низком напряжении питания;
  • безопасность использования бытовых приборов: чем ниже напряжение, тем меньше рисков;
  • первичные источники питания расположены на значительном удалении от потребителей: для транспортировки электроэнергии необходимо напряжение в сотни киловольт.

Соответственно, необходимы промежуточные преобразователи параметров между генерирующей системой и потребителем. Эти устройства называются вторичными источниками питания.

Для информации: Определение вторичности относительно. Например, трансформаторная подстанция между электростанцией и вашим домом, относительно генерирующей системы является вторичным источником питания. А по отношению к зарядному устройству вашего смартфона – это первичный источник.

Применимо к электроприборам, если розетку 220 вольт считать первичкой, вторичным является любой блок питания. Вне зависимости от того, встроен он в телевизор, или выполнен отдельным устройством, как в ноутбуке.

Помимо основной задачи: преобразовывать параметры напряжения и тока, источник вторичного питания может выполнять роль стабилизатора.

В начало

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

К этим категориям относятся генерирующие системы, которые обеспечивают питание в случае выхода из строя основных поставщиков энергии. В чем между ними отличие, ведь задача одна?

Бесперебойные блоки питания всегда находятся в режиме «on-line». Это значит, что при пропадании основного питания, мгновенно подключается собственный источник. Наилучший вариант – аккумуляторная батарея, работающая в буферном режиме. Разумеется, необходим преобразователь напряжения, стабилизатор, и пр. Но это тема для другой статьи.

Преимущества очевидны: потребитель практически не замечает перехода на «запасной» источник. Это особенно важно для сохранности данных (на компьютере), или исправности оборудования (например, система управления отопительным котлом в доме).

Недостаток – аккумулятор имеет определенную емкость. То есть, время работы ограничено. Поэтому бесперебойный источник необходим лишь для отсрочки времени: можно сохранить данные, и отключиться. Либо у вас есть время для включения резервного источника питания.

Резервный источник позволяет на 100% обеспечивать питанием объекты, при аварии на генерирующем устройстве. Это может быть автономный генератор, или резервная линия электропитания.

Для подключения требуется время, поэтому эти устройства нельзя отнести к бесперебойникам. Работа «резерва» приводит к дополнительным затратам, поэтому в качестве первичного источника питания он не используется.

Размытость понятий.

Нет четкой границы между «первичкой», «вторичкой» и резервом. Например, аккумулятор вашего планшета является источником бесперебойного питания, пока вы подключены к сети 220 вольт.

А в автономном режиме – это первичный источник. Трансформаторная подстанция (по определению – первичка), может стать резервным источником питания, если в вашем доме установлены солнечные батареи и ветрогенератор.

В начало

© 2010-2019 г.г.. Все права защищены. Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

labofbiznes.ru

Без перебоев. Источники резервного электропитания

Частые отключения электричества или скачки напряжения могут в один прекрасный момент вывести вашу бытовую технику, а также систему отопления и водоснабжения. Чаще всего проблемы с электроснабжением происходят в сельской местности, поскольку там состояние сетей оставляет желать лучшего. Именно по этой причине владельцам загородной недвижимости обычно приходится решать подобные проблемы.

Задача автономной системы электропитания – поддержка в течение определенного времени нормального функционирования домашних коммуникаций и бытовых устройств. В случае наличия подобного оборудования домовладельцы будут застрахованы от пресловутого «если вдруг…». Они могут быть уверенны в том, что не перегорят приборы и лампы, не потеряются данные в компьютере, а пожарная сигнализация не поднимет на ноги службу спасения.

Критерии выбора

Источники автономного питания бывают резервными и универсальными. Первые включаются вручную или автоматически только в случае перебоев электроэнергии. Универсальные устройства потому так и называются, так как они могут работать в качестве основного или резервного источника тока. Они сами следят за состоянием электрической сети и в случае скачков или отключения электроэнергии они сами включаются и обеспечивают дом бесперебойным электроснабжением.

Чтобы выбрать ту или иную модель, следует учесть ряд условий: частоту отключения электричества, длительность интервалов между отключениями, существуют ли перепады напряжения, нужен ли хозяевам дома полностью автоматический режим поставки электроэнергии или нет.

Широта охвата

Для защиты дома от сбоев в электросети можно выбрать один из трех вариантов снабжения индивидуального хозяйства электроэнергией.

Первый вариант – полное дублирование системы обычного электроснабжения дома, хозпостроек, прилегающей территории и т. д. Мощность устройства, которое все это будет питать, должно явно составлять 5-15 кВт при напряжении 220 В. В этом случае понадобится производительный дизельный генератор переменного тока.

Второй вариант – дублирование подачи электроэнергии только к самым важным потребителям: освещению, отопительной системе, водоснабжению и сигнализации. Здесь, скорее всего, достаточно будет резервного бензинового оборудования мощностью 2-5 кВт.

И, наконец, третий вариант. Он представляет собой прибор со встроенным аккумулятором (кислотным, щелочным или литиевым), который подключается непосредственно к потребителю электроэнергии. Впрочем, АКБ может быть также встроен в систему резервного электропитания – все зависит от вашего желания и технических условий. В подобных приборах аккумулятор заряжается автоматически, пока в центральной системе электроснабжение есть ток.

Да будет свет!

Индивидуальные дома обычно снабжают автономными станциями резервного питания, работающими на двигателе внутреннего сгорания. В качестве топлива в них используется бензин, дизель или газ. Подобные электрогенераторы подключаются к электрической системе дома. Как только электроэнергия в здании пропадает, генератор включают. От домовладельцев требуется лишь периодически проводить его обслуживание, доливать топливо и очищать от пыли.

Если перебои с электроэнергией у вас случаются часто, то обратите внимание на дизельные генераторы. Они экономичные, мощные и долговечные. Их можно использовать в качестве как основного, так и резервного источника электропитания. Дизель-генераторы при правильном подборе мощности могут легко «потянуть» всю систему электроснабжения дома вплоть до отопительной системы – газовых котлов, бойлеров, теплоавтоматики.

Для генератора с двигателем внутреннего сгорания необходимо оборудовать топливохранилище. Чем мощнее источник питания, тем больше должен быть резервуар. Наличие в генераторе системы автозапуска позволяет обеспечить бесперебойную подачу электроэнергии.

Дизельные генераторы очень шумны и выделяют много дыма, что совсем неуместно в доме. Поэтому такое устройство лучше разместить в отдельном отапливаемом помещении. Бензиновые и газобензиновые генераторы тише в работе, а некоторые модели бывают даже переносными. Их конструкция проще дизелей и они легче в ремонте. В газобензиновых источниках резервного питания используется магистральный или баллонный газ, который иногда комбинируют с бензином.

Палочка-выручалочка

Если перебои с электроэнергией у вас нечастые и недлительные, то можно обойтись без генератора. В таких случаях отлично подойдет инверторная система бесперебойного питания. Условно она состоит из встроенного аккумулятора и электроники. Электронная часть заряжает АКБ (когда в сети есть ток) и преобразует постоянное напряжение батареи в переменное (когда прибор отдает энергию в случае отключения света). В итоге на выходе такого прибора мы получаем все те же 220 В.

Такие «бесперебойники» могут работать в автономном режиме от нескольких минут до нескольких часов. Этот интервал зависит от емкости встроенных батарей. Очевидно, что в случае многочасовых отключений электроснабжения инверторные источники будут бесполезны. Хотя ни что не мешает их использовать вместе с электрогенераторами.

Внутри бесперебойных систем могут быть установлены кислотные, щелочные или литиевые батареи. Жидкостным аккумуляторам необходимо периодическое обслуживание (долив электролита, проверка плотности). В этом отношении герметичные необслуживаемые АКБ более удобны, но они, как правило, дороже. Срок службы аккумуляторов составляет 5-12 лет (зависит от качества изделий и периодичности эксплуатации). Если какая-то батарея выйдет из строя, то ее легко можно будет заменить.

Полезно знать

Выбирая источник аварийного питания, следует рассчитать потребляемую мощность всех электроприборов. В характеристиках генераторов обычно указывается номинальная и фактическая мощность. Именно на последний показатель нужно обращать внимание. Номинальная мощность – это максимальная величина, которую готов выдавать прибор в течение короткого времени (в среднем всего 10-15% от времени разовой эксплуатации).

Если фактическая мощность не будет указана, то ее несложно рассчитать. Для этого номинальная мощность умножается на коэффициент 0,7. К примеру, если вы увидите в продаже генератор мощностью 1 кВт, то знайте: его фактическая мощность равна 700 Вт.

foraenergy.ru


Смотрите также